Neurodegeneration in a transgenic mouse model of multiple system atrophy is associated with altered expression of oligodendroglial-derived neurotrophic factors.

نویسندگان

  • Kiren Ubhi
  • Edward Rockenstein
  • Michael Mante
  • Chandra Inglis
  • Anthony Adame
  • Christina Patrick
  • Kristen Whitney
  • Eliezer Masliah
چکیده

Multiple system atrophy (MSA) is a neurodegenerative disorder characterized by striatonigral degeneration and olivo-pontocerebellar atrophy. Neuronal degeneration is accompanied by primarily oligodendrocytic accumulation of alpha-synuclein (alphasyn) as opposed to the neuronal inclusions more commonly found in other alpha-synucleinopathies such as Parkinson's disease. It is unclear how alphasyn accumulation in oligodendrocytes may lead to the extensive neurodegeneration observed in MSA; we hypothesize that the altered expression of oligodendrocyte-derived neurotrophic factors by alphasyn may be involved. In this context, the expression of a number neurotrophic factors reportedly expressed by oligodendrocytes [glial-derived neurotrophic factor (GDNF), brain-derived neurotrophic factor (BDNF), and insulin-like growth factor 1 (IGF-1), as well as basic fibroblast growth factor 2 (bFGF2), reportedly astrocyte derived] were examined in transgenic mouse models expressing human alphasyn (halphasyn) under the control of either neuronal (PDGFbeta or mThy1) or oligodendrocytic (MBP) promoters. Although protein levels of BDNF and IGF-1 were altered in all the alphasyn transgenic mice regardless of promoter type, a specific decrease in GDNF protein expression was observed in the MBP-halphasyn transgenic mice. Intracerebroventricular infusion of GDNF improved behavioral deficits and ameliorated neurodegenerative pathology in the MBP-halphasyn transgenic mice. Consistent with the studies in the MBP-halphasyn transgenic mice, analysis of GDNF expression levels in human MSA samples demonstrated a decrease in the white frontal cortex and to a lesser degree in the cerebellum compared with controls. These results suggest a mechanism in which alphasyn expression in oligodendrocytes impacts on the trophic support provided by these cells for neurons, perhaps contributing to neurodegeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetically Engineered Mouse Embryonic Stem Cell – derived Cardiomyocytes as a Suitable Model on Drugs Toxicity In vitro

Background DOX is a powerful chemotherapeutic agent used in the treatment of solid tumors and malignant hematological diseases. However, its cardiac toxicity limits the clinical usefulness of this drug. Previous reports have shown Corticosteroids induce a cytoprotective effect on cardiomyocytes. Mouse transgenic embryonic stem cell-derived pure cardiomyocytes may be considered as a model for a...

متن کامل

MicroRNA-101 Modulates Autophagy and Oligodendroglial Alpha-Synuclein Accumulation in Multiple System Atrophy

Synucleinopathies, neurodegenerative disorders with alpha-synuclein (α-syn) accumulation, are the second leading cause of neurodegeneration in the elderly, however no effective disease-modifying alternatives exist for these diseases. Multiple system atrophy (MSA) is a fatal synucleinopathy characterized by the accumulation of toxic aggregates of α-syn within oligodendroglial cells, leading to d...

متن کامل

Androgen-dependent loss of muscle BDNF mRNA in two mouse models of SBMA.

Transgenic expression of neurotrophic factors in skeletal muscle has been found to protect mice from neuromuscular disease, including spinal bulbar muscular atrophy (SBMA), triggering renewed interest in neurotrophic factors as therapeutic agents for treating neuromuscular disease. Because SBMA is an androgen-dependent disease, and brain-derived neurotrophic factor (BDNF) mediates effects of an...

متن کامل

FAS-Dependent Cell Death in α-Synuclein Transgenic Oligodendrocyte Models of Multiple System Atrophy

Multiple system atrophy is a parkinsonian neurodegenerative disorder. It is cytopathologically characterized by accumulation of the protein p25α in cell bodies of oligodendrocytes followed by accumulation of aggregated α-synuclein in so-called glial cytoplasmic inclusions. p25α is a stimulator of α-synuclein aggregation, and coexpression of α-synuclein and p25α in the oligodendroglial OLN-t40-A...

متن کامل

Targeted overexpression of human α-synuclein in oligodendroglia induces lesions linked to MSA -like progressive autonomic failure

Multiple system atrophy (MSA) is a rare neurodegenerative disease of undetermined cause manifesting with progressive autonomic failure (AF), cerebellar ataxia and parkinsonism due to neuronal loss in multiple brain areas associated with (oligodendro)glial cytoplasmic alpha-synuclein (alpha SYN) inclusions (GCIs). Using proteolipid protein (PLP)-alpha-synuclein (alpha SYN) transgenic mice we hav...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 30 18  شماره 

صفحات  -

تاریخ انتشار 2010